The best small computer in the world.

| G | DATA GENERAL CORPORATION | nova |

Edson D. de Castro, President, Data General Corporation

A hard look at small computers

Small computers are creating quite a stir.
You hear that they are being purchased faster than any other kind of computer. And that they
arc creating an applications explosion, expanding even their current rate of sales growth.

It seems manufacturers have not let this action go unnoticed. The expanding marketplace is
encouraging a rush of new products. Old designs are being revamped. New designs are being rushed
to market. The mini-computer boom is on.

But what is the boom producing ? Is a growing market and increasing competition producing
better computer value ?

Well, the current crop of machines varies considerably. Word lengths vary. Input [output
facilities vary. Instruction sets vary. Software varies. Performance varies.

We designed the NOVA believing that new technology and improvements in the art of
computer design had offered the opportunity for vast improvements in the price /performance ratio
of the minimum configuration of small general purpose digital computers.

But there were some things we had to know before we could take advantage of these
opportunities.

We had to know that, mini-computer or not, the power of these machines stems from their
performance as general purpose computers. That whatever they are used for, they would have to be
programmed first. And that it was possible to so strip a computer of programming power that the
machine could become more trouble than it was worth.

At the same time, we had to know that the special domain of these machines is in the on-line,
real-time environment. That over half the small computers purchased are built into larger systems as
special purpose data reducers and controllers.

I think you will find the NOVA to be a better small computer. We designed the system
incorporating an architecture previously found only in medium and large scale third generation
computers. This architecture permitted an extremely powerful instruction set. We took full advantage of
medium scale integration. We were also able to design the NOVA around the special input Joutput and
packaging requirements of the small computer. We designed a new kind of read-only memory inter-
changeable with core, for “black box” configurations.

You see, in designing and pricing the NOVA, we were after more than just getting a piece of the
small computer action. We were after a machine that would be the basis for starting a major computer
company. I think we succeeded. The NOVA is that good.

Richard G. Sogge, Vice President, Data General Corporation

The hardware

As Ed has mentioned, the architecture of the NOVA had previously never been implemented in a
small computer design. The breakthrough that made it possible was medium scale integration.

It now is possible to obtain sixteen flip-flops in a single package for use in regular registers; the
cost per function of an MSI component is somewhat lower than the cost of discrete gates and flip-flops.
But that is not MSI’s major contribution. The big savings with MSI came from the reduction of
interconnection and resultant savings in packaging costs. And, of course, the reduction of inter-
connection also had a very favorable effect on reliability. MSI accounts for over half the gates and
flip-flops used in the NOVA.

And there are two kinds of memory available with the NOVA, core and read-only.

A user will create his read-only memory by writing his program using a core memory. He uses the
full software of the system to write, edit, and debug his program. After he is satisfied with his program,
he dumps it on paper tape and sends the tape to Data General. This tape is used as the basis for
manufacturing the memory and verifying its contents. When complete, the read-only memory is simply
plugged into the NOVA in place of the core memory. Should changes be required in the read-only
memory they can easily be made by a technician.

These two kinds of memory are homogenous; the alterable and read-only storage are treated
identically by the program and the processor. The only difference is that different kinds of memory vary
in speed. But the two kinds of memory may be mixed. In a system in which only one program is being
used, it can be stored along with its constants, in a read-only memory module. The alterable core
memory can then be used for the storage of variable data and intermediary results. Or, the system con-
sole can be removed and the system operated as a hard wired controller. By changing read-only
memories, the functions performed by this controller may be altered. Memories are available in 1K,
2K, or 4K word modules. The maximum memory size is 32K words or 64K bytes.

The read-write cycle times for the several core memory modules and the access time for read-only

memory are as follows:
1K 6.5 micro-seconds
2K 3.9
4K 2.6
Read-only Memory 24

In and out

Small computers interface with more kinds of devices with greater varying data rates and
priority interrupt requirements than any other class of computer. Not only do they interface with the full
range of computer peripherals, but they often become part of special or unique systems.

We decided to build a complete input [output facility into the basic NOVA. Included in the
system are facilities for program interrupt and high speed data transfers with provision for direct access
to memory. Any device can interrupt the normal program flow on a priority basis. A high speed device
such as magnetic tape or disk can gain direct access to memory through a data channel without requir-
ing the execution of any instructions. The data channel logic allows the transfer of data to or from
memory, incrementing of memory word, and adding external data to a word already in memory. The
latter two features facilitate such functions as signal averaging and pulse height analysis.

The NOVA 1 /O facility consists of 16 bi-directional data lines, 6 lines for device selection, 19
unary control lines from the central processor, and 6 control lines to the central processor. The control
lines from the central processor are used to synchronize all data transfers on the data lines, to initiate
and stop device functions, and to control the priority interrupt system. The control lines to the processor
are used to indicate device status, and to request priority interrupt and data channel service.

The unary control lines from the processor contain two types of information : the specific function
to be performed by the device, and timing information. These control lines are arranged in such a way
that the device need connect only to those that correspond to the particular I /O functions that the
device requires. The timing of the control lines is determined by the processor in such a fashion that
the device does not require any time-dependent circuits to connect to the I /O interface.

The input Joutput system allows the program to address up to 62 external devices.

Henry Burkhardt, I, Vice President, Data General Corporation

Instruction power

Most medium and large scale third generation computer systems have central processors
organized around multiple general purpose registers or accumulators. The logical and arithmetic
instructions of these machines are performed by manipulating the contents of these accumulators. There
is less need to address or access memory. Also, the availablility of these multiple registers improves
the efficiency of accumulator to memory operations and data flow between the computer and
peripheral devices.

Until we designed the NOVA, small computers either had a single accumulator or assigned mem-
ory locations to simulate this organization, trading off much of the basic power of the set-up.

In the NOVA we have been able to fully implement a multi-accumulator central processor
architecture. It is from this architecture that much of the power of the machine stems.

The NOVA has four full sixteen-bit word accumulators, two of which may be used as index
registers. Data can be moved in either direction between any memory location and any NOVA
accumulator. Although a word in memory can be incremented or decremented, all other arithmetic
and logical operations are performed on operands in the accumulators, with the result appearing in an
accumulator. Associated with the accumulators is a single carry flag, which indicates when the magnitude
of the result is too large to be accommodated in a single accumulator. The left and right halves of any
accumulator can be swapped, the contents of any accumulator can be tested for a skip, and the 17-bit
word contained in any accumulator combined with the carry can be rotated right or left. An instruction
that references memory can address two of the accumulators as index registers and transfers to and
from peripheral devices are also made through the accumulators.

This multi-accumulator organization cuts down on the number of instructions necessary to
execute a program. And reduces the amount of data movement in the machine. For example, in as
trivial an operation as the exchanging of the contents of two memory locations, the multi-accumulator
set-up reduces the number of instructions by one third.

Since an arithmetic or logical instruction does not contain a memory address, there are many
bits that can be used for functions other than specifying the basic operation and the operands.

Arithmetic and logical instructions are frequently preceded by instructions which modify an
operand and followed by a modification of the result and sometimes by a test. We felt that if these
operations could be combined in a single instruction class, a much simpler to use and more powerful
instruction structure would be achieved. We designed a class of instructions arranged so that each bit has
its own function and thus it is unnecessary to decode most portions of the instruction word. The same
instruction that adds or subtracts can also shift the result or swap its halves, test the result and for carry -
for a skip, and specify whether or not the result shall actually be retained.

A single input Joutput instruction can transfer a word between an accumulator and a device and
at the same time control the device operation. '

The NOVA is much easier to program than single accumulator machines. The results of
address calculations are immediately available for index purposes to the memory reference instructions.
One accumulator can be used for in-out data transmission without disturbing others being used
continually for computations. Complex software routines such as multiplication, division and floating
point can be performed without constantly referencing memory.

Henry Burkhardt, lll, Vice President, Data General Corporation

Software: first things first

Frankly, the basic NOVA software has been designed for the experienced computer user.

We knew that we would never stop developing new software packages and initially, we decided to
concentrate on those things that were most integrally a part of the system.

The initial NOVA software includes a powerful assembler, a context oriented text editor, a
multiple breakpoint debugger, complete hardware diagnostics, utility programs, and mathematical
routines, including floating point arithmetic.

The NOVA assembler is a two pass system producing absolute binary and an assembly
listing. Pseudo commands are provided to alter assembly origin, radix and to define new operation
codes. Text may also be processed and packed into binary words. Input [output is fully buffered
using the priority interrupt system, a binary search is used for the symbol table, and hence the
assembly speed is I /O limited. The assembly language is free-form. The input need not be precisely
formatted into columns as is required by many small computer assemblers. Control characters are used
to delimit labels, comments and instruction fields. This provides greater freedom in the generation of
program text as well as vastly reducing the errors due to missing spaces or blanks. The basic philosophy
of the assembler has been to provide as few “default conditions’ as possible. If it isn’t entirely obvious
what the user intended by a given line of code, the assembler will flag the line as questionable.

Since very few small computers are operated in an environment where program tape preparation
and assembly services are available, a very high percentage of programming time is consumed in
program assembling and editing. But no one is providing a text editing program that is both convenient
to use and powerful enough for the experienced user.

Text editors are based upon the simple principle of reading a chunk of text into computer
memory, modifying it through keyboard commands, and then outputting a corrected file. Most editors
force the user to modify text at the line level — if a line of text has a single character error in it, the user
must type the entire line over again. In addition, the actual addressing or locating of the errant text is a
difficult process with the text editors available today. To overcome these problems, the NOVA text
editor is organized around both line and character operations. Single characters, character strings, whole
lines and multiple lines may be inserted, deleted or replaced with single keyboard commands. Text is
readily located by means of string searches.

One of the programs that has been most neglected by the manufacturers of small computers is
the debugging package. The existing packages are very limited in their permissible use of breakpoints.
The user is constrained to use a single breakpoint, if any, and severe restrictions are placed upon the
use of the breakpoint — it cannot be used with the machine’s program interrupt hardware. The NOVA
debugging packages allow the simultaneous operation of four breakpoints with no restrictions upon
their placement or usage. The debugger also offers the traditional operations of memory
examination and modification, binary punch-out, memory searches and dumps.

The physical construction of the NOVA opens several possibilities for the use of the debugger
that have not been available before. Since the NOVA’s 514 “ high enclosure can accommodate up to .
16K words of core memory in addition to 1 /O interfaces, the OEM user has the ability to simply
plug-in an additional memory module in which the debugging package may reside while checking
out his program. The memory module can then be removed before shipment of the machine and appli-
cations program. If program bugs are uncovered during field usage of the system, a memory module
with the debugger in it can be installed, the source of the bug identified and corrected, and the
module removed.

Herbert J. Richman, Vice President, Data General Corporation

Configuring your system

Small computers should come in any size you wish. The NOVA does.

A general purpose NOVA configuration has a central processor, console, power supply, 4096
sixteen-bit words of core memory and an interface for Teletype. But you can configure your system
smaller than this. You can have as little as 1024 words of memory. You can make this memory read-only
and remove the display console and have the least expensive computer controller you can buy.

Or you can gracefully expand the basic NOVA. You see, a big part of the total price of a small
computer system is in the cost of packaging the system. The NOVA has as much room for expansion
in the basic configuration as most customers will need.

The NOVA rack mount version takes up only 514 inches of a standard 19 inch rack. The desk
top version is slightly larger and handsomer. Both can contain the same amount of hardware.

The NOVA, rack or desk model, contains space for seven printed circuit subassemblies. Each of
these subassemblies are 15" x 15" with a 200 pin connector on one end and handles for insertion and
removal on the other end.

The boards which are inserted in these slots may be any one of several system components.
Two slots are used for the central processor. One slot is used for each memory module (4K, 2K, or 1K)
added. One slot can contain an I /O option card which contains the control logic for several standard
peripheral devices.

Thus, for a 4K system with Teletype, four slots are used and three are available for additional
options, memory, and customer designed and built logic. Both the memory bus and the I /O bus are
available at these slots so options or memory may be added by simply plugging in the appropriate
sub-assembly. No extra wiring is required.

A 514" tall NOVA expansion cabinet can be added to the basic NOVA. It also has the memory
bus and I /O bus pre-wired to the slots using printed circuit wiring.

Service, pricing, and delivery

NOVA is backed by a generous guarantee and trained Data General service personnel. These
regionally-based service personnel can set up just the kind of service arrangement you need.

They can recommend a back-up of NOVA spare parts and sub-assemblies so that you may never
have to call him. You will be able to have your NOVA repaired through the mails at Data General’s
factory and not lose a minute of computer time.

When you get your NOVA we will teach you how to use it. Comprehensive training classes are
available for NOVA programming and maintenance. You will receive complete documentation:
User’s Handbook, Interface and Installation, Software and Maintenance. You will also receive a
documentation up-dating service including an expanding NOVA software library.

We were after a better performing computer and NOVA’s performance exceeds that of any
machine in its price class in every benchmark we have run. And we deliberately chose benchmarks that
competitive manufacturers had been using to demonstrate the superiority of their particular machines.

We were after a lower priced computer and the price for the NOVA is very much lower for com-
parative configurations of each and every competitive machine — from the most stripped-down
controller to general purpose systems with mass storage.

We know that over half the small computers purchased are purchased in quantity by the same
customer. And that it costs us less to sell and service one hundred computers to one customer than to
one hundred individual customers.

We also know that the way to lower the price of computers is to manufacture in volume.

So we are offering by far the best quantity and OEM discounts ever offered for small computers.

We believe the only way to go in this small computer business is big. So we’re starting out to
manufacture hundreds of NOVA’s our first year. Our rapidly increasing rate of production will equal
or exceed the fastest delivery rate of any small computer in the industry.

Soon we will be able to deliver NOVAs as fast as they are ordered. Until then, it’s first order,
first machine.

NOVA specifications and instructions

SPECIFICATIONS

NOVA is a 16-bit word general purpose
computer. It has four accumulators,
two of which may be used as index
registers. It offers a choice of core or
read-only memory of 1K, 2K, 4K, BK,
and up to 32K 16-bit words (or twice
that many 8-bit bytes). NOVA comes in
desk top console or a 5% tall stan-
dard rack mount package. Both the
desk and rack versions can hold up to
20K 16-bit words of memory or inter-
faces for a large number of peripheral
devices. NOVA has the most flexible
1/0 facility ever built into a machine of
its class. It includes a high-speed Data
Channel and automatic interrupt source
identification as standard equipment.

Electrical specifications

Power Requirements

90 to 250 volts, 40 to 440 Hz single
phase power capable of supplying
approximately 5 amperes.

Receptacle required to receive stan-
dard three wire plug.

Power Dissipation

400 watts.

1/0 Bus Levels

Ground and +5 volts (standard TTL
integrated circuit logic levels).

Environmental specifications
Operating Temperature

The instruction also supplies a carry
bit to the shifter with the result. Bits 10
and 11 specify a base value to be used
in determining the carry bit. The in-
struction supplies either this value or
its complement depending upon both
the function being performed and the
result it generates. The mnemonics
and bit configurations and the base
values they select are as follows.

Mne- Bits Base valve for
monic 10-11 carry bit
00 Current state of carry
4 01 Zero
o] 10 Complement of current
state of carry
0 11 One

The three logical functions simply sup-
ply the listed value as the carry bit to
the shifter. The five arithmetic func-
tions supply the complement of the
base value if the operation produces a
carry out of bit 0; otherwise they sup-
ply the value given. The carry bit can
be used in conjunction with the sign
of the result to detect overflow in oper-
ations on signed numbers. But its pri-
mary use is as a carry out of the most
significant bit in operations on un-
signed numbers, such as the lower
order parts in multiple precision arith-
metic.

The 17-bit word consisting of the
carry bit and the 16-bit result is oper-

0°C to 50°C. ated on by the shifter as specified by
Relative Humidity bits 8 and 9.
To 90%.
Mne- Bits
monic 8-9 Shift operation
INSTRUCTIONS 00 None
ARITHMETIC AND LOGICAL L@ Lelgiae ong plaoe:
INSTRUCTIONS Bit0is rotai_e(‘j into the
5 : i i carry position, the
An instruction that has a 1 in bit 0 per- carry bit into bit 15
forms one of eight arithmetic and logi- R 10 Right rotate one place.
cal functions as specified by bits 5-7 Bit 15 is rotated into
of the instruction word. The function, the carry position, the
which may be anything from a simple carry bit into bit 0
move 10 a subtraction, always uses the S 11 Swap the halves of the
contents of the accumulator specified 16-bit result. The carry
by bits 1 and 2; and if a second oper- bit is not affected
and is required, it comes from the ac-
cumulator addressed by bits 3 and 4.
AC AC o
1 asl?gﬁnfsss uz:gm;gou FUNCTION SHIFT CARRY el SKIP
1] pe ; [1 1 1
¢ 1 2 3l¢ s sl2 8 9sbw n w2l 1w

The shifter output is also tested for
a skip according to the condition spec-
ified by bits 13-15. The processor
skips the next instruction if the speci-
fied condition is satisfied.

Mne- Bits
monic 13-15 Skip function
0 MNewver Skip

SKP 1 Always Skip

SZC 2 Skipon Zero Carry
SNC 3 Skip on Monzero Carry
SZR 4 Skip on Zero Result
SNR 5 Skip on Nonzero Result
SEZ 6 Skip if Either Carry

or Result is Zero
SBN 7 Skip if Both Carry and

Result are Nonzero

Arithmetic and Logical Functions

The eight tunctions are selected by
bits 5-7 of the instruction word. For
convenience the accumulators ad-
dressed by the S and D parts of the in-
struction are referred to as ACS and
ACD.

COM Complement 5.6 ns
[1s]pJooo]SH] c [N sk |
0123245678 90N12131815
Place the (logical) complement of the
word from ACS and the carry bit speci-
fied by C in the shifter. Perform the
shift operation specified by SH. Load
the shifter output in carry and ACD
unless Nis 1. Skip the next instruction
if the shifter output satisfies the condi-
tion specified by SK.

NEG MNegate 5.6 us
T o] 1.
0'T 2345 6'7 8 9'101112131415

Place the twos complement of the
number from ACS into the shifter.
Perform the shift operation specified
by SH. Load the shifter output in carry
and ACD unless N is 1. Skip the next

instruction if the shifter output satis-
fies the condition specified by SK.

INC [ncrement 5.6 us

011 .
0123456738 9 0NRENWIE
Add 1 to the number from ACS and
place the result in the shifter. Perform
the shift operation specified by SH.
Load the shifter output in carry and
ACD unless N is 1. Skip the next in-
struction if the shifter output satisfies
the condition specified by SK.
ADC Add Complement

1] O 22 S Y
0'1 2345678 9101112131415
Add the (logical) complement of the
number from ACS to the number from
ACD, and place the result in the shifter.
Perform the shift operation specified
by SH. Load the shifter output in carry
and ACD unless N is 1. Skip the next
instruction if the shifter output satisfies
the condition specified by SK.
SUB Subtract

[T] of1o1]

0T 73456789 W0NNRBNRIG
Subtract by adding the twos comple-

5.9 us

5.9 s

e —————— e

ment of the number from ACS to thg |

number from ACD, and place the re-
sult in the shifter. If the signs of the
operands are the same and ACD =
ACS, or the signs differ and ACD is
negative, supply the complement of
the value specified by C as the carry
bit; otherwise supply the specified

value. (For unsigned numbers the |

carry condition is simply that ACD =
ACS.) Perform the shift operation spec-
ified by SH. Load the shifter output in

carry and ACD unless M is 1. Skip the |

next instruction if the shifter output
satisfies the condition specified by
SK.

ADD Add 5.9 us

instruction if the shifter output satisfi
the condition specified by SK.
MOV Move

[T L Toiol T 17,

0’1 2 3’45678 9101112131415
Place the contents of ACS and the
carry bit specified by C in the shifter.
Perform the shift operation specified
by SH. Load the shifter output in carry
and ACD unless N is 1. Skip the next

5.6 us

Ll [[rrof %

0'T 2345 6'7 8 9101112131415
Add the number from ACS to the num-
ber from ACD, and place the result in
the shifter. If both summands are
negative, or their signs differ and their
magnitudes are equal or the positive
one is the greater in magnitude, sup-
ply the complement of the value speci-

fied by C as the carry bit; otherwise |

supply the specified value. (For un-
signed numbers the carry condition
is simply that the sum is = 2'¢)) Per-
form the shift operation specified by
SH. Load the shifter output in carry
and ACD unless N is 1. Skip the next
instruction if the shifter output satisfies
the condition specified by SK.
AND And

of [[111],

0123456789 0NIRBHRI5
Place the logical and function of the
word from ACS and the word from ACD
in the shifter. Supply the value speci-
fied by C as the carry bit. Perform the
shift operation specified by SH. Load
the shifter output in carry and ACD
unless N is 1. Skip the next instruction
if the shifter output satisfies the con-
dition specified by SK.

59 ps

MEMORY REFERENCE
INSTRUCTIONS

Bits 5-15 have the same format in
‘every memory reference instruction
‘whether the effective address is used
for storage or retrieval of an operand
J{Dr to alter program flow. Bit 5 is the
‘indirect bit, bits 6 and 7 are the index

Ili |II ¥ | 1 L I L L i

i 5 6'7 8 910111213 14 15
bits, and bits 8-15 are the displace-
ment. The effective address E of the
instruction depends on the values of
I, X, and D. If X is 00, D addresses one
of the first 256 memory locations, i.e.,
D is a memory address in the range
00000-00377. This group of locations
is referred to as page zero.

- If X is nonzero, D is a displacement
that is used to produce a memory ad-
‘dress by adding it to the contents of
the register specified by X. The dis-
- placement is a signed binary integer in
llWOs complement notation. Bit 8 is the
sign (0 positive, 1 negative), and the
nnteger is in the octal range —200 to
+177 (decimal —128 to +127). If X is
01, the instruction addresses a loca-
-'ﬁon relative to its own position, i.e.,
- D is added to the address in PC, which
is the address of the instruction being
executed. This is referred to as relative
.addressing. If X is 10 or 11 respec-

1

tively, it selects AC2 or AC3 as a base
register to which D is added.

X Derivation of address
00 Page zero addressing. D is an ad-
dress in the range 00000-00377.

01 Relative addressing. D is a signed
displacement (—200 to 4177) that
is added to the address in PC.

10 Base register addressing. D is a
signed displacement (—200 to
+177) that is added to the ad-
dress in AC2.

11 Base register addressing. D is a
signed displacement (—200 to
+177) that is added to the ad-
dress in AC3.

If | is 0, addressing is direct, and the
address already delermined from X
and D is the effective address used in
the execution of the instruction. Thus
a memory reference instruction can
directly address 1024 locations: 256 in
page zero, and three sets of 256 in the
octal range 200 less than to 177 greater
than the addresses in PC, AC2 and
AC3. If | is 1, addressing is indirect,
and the processor retrieves another
address from the location specified by
the address already determined. In this
new word bit 0 is the indirect bit: bits
1-15 are the effective address if bit 0
is 0; otherwise they specify a location

| A
!TITT‘T'T‘?‘F’T‘W'WWWEI
for yet another level of address retriev-
al. This process continues until some
referenced location is found with a 0
in bit 0; bits 1-15 of this location are
the effective address E.

If at any level in the effective ad-
dress calculation an address word is
fetched from locations 00020-00037,
it is automatically incremented or dec-
remented by one, and the new value is
both written back in memory and used
either as the effective address or for
the next step in the calculation de-
pending on whether bit 0 is 0 or 1. Ad-
dresses taken from locations 00020-
00027 are incremented, those from lo-
cations 00030-00037 are decremented.

Move Data Instructions

These two instructions move data be-
tween memory and the accumulators,
In the descriptions of all memory ref-
erence instructions, E represents the

effective address. The time given in
the top line is for direct addressing, in
page zero or relative to PC. Base reg-
ister addressing requires an additional
.3 ws; indirect addressing requires one
extra memory cycle time per level; auto-
incrementing and autodecrementing re-
quire no extra time.

LDA Load Accumulator

O] Al x]
012345678 8NN REERDE
Load the contents of location E into
accumulator A. The contents of E are
unaffected, the original contents of A
are lost.

STA Store Accumulator

[ofo[A X]

0T 2345 678N ER R
Store the contents of accumulator A in
location E. The contents of A are un-
affected, the original contents of E are
lost.

Modify Memory Instructions

These two instructions alter a memory
location and test the result for a skip.
They are used to count loop iterations
or successively modify a word for a
series of operations.

ISZ Increment and Skip if Zero 5.2 us
oo oftofif x] D

0T 2365 6785 90N BT
Add 1 to the contents of location E and
place the result back in E. Skip the
next instruction in sequence if the re-
sult is zero.

DSZ Decrement and Skip if Zero

2 us

52 us

5.5us

|0|00|1 1|||x| D

T 738456783 DNRZBNRIG
Subtract 1 from the contents of loca-
tion E and place the result back in E.
Skip the next instruction in seguence
if the result is zero.
Jump Instructions
These two instructions allow the pro-
grammer to alter the normal program
sequence by jumping to an arbitrary
location. They are especially useful for
calling and returning from subroutines.
JMP Jump 2.6 us
[ojo0fooft[x|
0123456789 DNIERBHDB
Load E into PC. Take the next instruc-

tion from location E and continue se-
guential operation from there.

JSR Jump to Subroutine
|o|00[t11|1|x] D

"M 2345678 9'1011121314 15
Load an address one greater than that
in PC into AC3 (hence AC3 receives
the address of the location following
the JSR instruction). Load E into PC.
Take the instruction from location E
and continue sequential operation from
there. The original contents of AC3
are lost.

3.5ps

INPUT-OUTPUT INSTRUCTIONS

Instructions in the in-out class govern
all transfers of data to and from the
peripheral equipment, and also per-
form various operations within the
processor. An instruction in this class
is designated by 011 in bits 0-2. Bits
10-15 select the device that is to re-
spond to the instruction. The format
thus allows for 64 codes of which 62
can be used to address devices (octal
01-78). The code 00 is not used, and
77 is used for a number of special
functions including reading the con-
sole data switches and controlling the
program interrupt.

Every device has a 6-bit device se-
lection network, an Interrupt Disable
flag, and Busy and Done flags. The se-
lection network decodes bits 10-15 of
the instruction so that only the ad-
dressed device responds to signals
sent by the processor over the in-out
bus. The Busy and Done flags together
denote the basic state of the device.
When both are clear the device is idle.
To place the device in operation, the
program sets Busy. If the device will
be used for output, the program must
give a data-out instruction that sends
the first unit-of data — a word or char-
acter depending on how the device
handles information. (The word "out-
put” used without qualification always
refers to the transfer of data from the
processor to the peripheral equipment;
“input" refers to the transfer in the
opposite direction.) When the device
has processed a unit of data, it clears
Busy and sets Done to indicate that
it is ready to receive new data for out-
put, or that it has data ready for input.
In the former case the program would

respond with a data-out instruction 1o
send more data; in the latter with a
data-in instruction to bring in the data
that is ready. If the Interrupt Disable
flag is clear, the setting of Done sig-
nals the program by regquesting an
interrupt; if the program has set In-
ferrupt Disable, then it must keep test-
ing Done or Busy to determine when
the device is ready.

In all in-out instructions bits 8 and 9
either control or sense Busy and Done.
In those instructions in which bits 8
and 9 specify a control function, the
mnemonics and bit configurations and
the functions they select are as follows.

Mne- Bits
monic 89 Control function
00 Mone
S 01 Start the device by
clearing Done and
setting Busy.
o] 10 Clear both Busy and
Done, idling the device -
P 11 Pulse the special in-

out bus control line —
the effect, if any, de-
pends on the device.

The overall sequence of Busy and
Done states is determined by both the
program and the internal operation of
the device.

Busy Done

Start (0 .
\Clear

Device ('1 0) Start
Completion 0 1 / Again
The data-in or data-out instruction that
the program gives in response to the
setting of Done can also restart the
device. When all the data has been
transferred the program generally
clears Done so the device neither re-
quests further interrupts nor appears
1o be in use, but this is not necessary.
Busy and Done both set is a meaning-
less situation.

Bits 5-9 specify the complete func-
tion to be performed. If there is no
transfer (bits 5-7 all alike), bits 3 and
4 are ignored and bits 8 and 9 may

specify a control function or a skip
condition.

NI10 No |10 Transter 4.4 ps

DIB DatainB 4.4 ps

(o[t 1[o0fo00[F[D

lofuifacfot1[F] o

0Tz 3 5 67 F SN LR
Perform the control function specified
by F in device D.
SKPBN Skip if

Busy is Nonzero

o1, fooft11foof b
012365678 9 10NRENI
Skip the next instruction in sequence
if the Busy flag in device D is 1.
SKPBZ Skip if Busy is Zero 4.4 ps

0‘11!0011101 D
0'T 27 3745 67 8 910111213 12 15
Skip the next instruction in seguence
if the Busy flag in device D is 0.

SKPDN Skip if
Done is Nonzero

O[LI0 0111

012345 6'7 8 9101112131415
Skip the next instruction in sequence if
the Done flag in device D is 1.

SKPDZ Skip if Busy is Zero
ojt1foot11fi1] b
0T 2345678 9N0NIZBLIIG

Skip the next instruction in sequence if
the Done flag in device D is 0.

DIA DatalnA 4.4 ps

IOIIAC!OOI F D
0

123'456'78 0901112131415
Move the contents of the A buffer in
device D to accumulator AC, and per-
form the function specified by F in de-
vice D.

The number of data bits moved de-
pends on the size of the device buf-
fer, its mode of operation, etc. Bits in
AC that do not receive data are cleared.

DOA Data Out A 4.7 us

D!llACIOIOIF D
0

1234567809 101112131415
Send the contents of accumulator AC
to the A buffer in device D, and per-
form the function specified by F in de-
vice D.

The amount of data actually ac-
cepted by the device depends on the
size of its buffer, its mode of operation,
etc. The original contents of AC are
unaffected.

4.4 us

4.4 ps

4.4 ps

0123455?39101112131415

Move the contents of the B buffer in
device D to accumulator AC, and per-
form the function specified by F in de-
vice D.

The number of data bits moved de-
pends on the size of the device buffer,
its mode of operation, etc. Bits in AC
that do not receive data are cleared.
DOB DataQutB 4.7 s

o[LI[AC[10 0] F]

0'1 2345678 9'1011127131415
Send the contents of accumulator AC
to the B buffer in device D, and per-
form the function specified by F in de-
vice D.

The amount of data actually ac-
cepted by the device depends on the
size of its buffer, its mode of opera-
tion, etc. The original contents of AC
are unaffected.
DIC DatainC

0[11/AC|101|F D
012345 678 9W0112I3NKID
Move the contents of the C buffer in
device D to accumulator AC, and per-
form the function specified by F in de-
vice D.

The number of data bits moved de-
pends on the size of the device buffer,
its mode of operation, etc. Bits in AC
that do not receive data are cleared.
DOC DataQutC 4.7 us

o[L1[AcTi1o[F] D]
0’

123456733 0NEBNRIDG
Send the contents of accumulator AC
to the C buffer in device D, and per-
form the function specified by F in de-
vice D.

The amount of data actually ac-
cepted by the device depends on the
size of its buffer, its mode of opera-
tion, etc. The original contents of AC
are unaffected.

Special Code-77 Functions

In-out instructions with the code 77 in
bits 10-15 perform a number of spe-
cial functions rather than controlling
a specific device. In all but the skip
instructions bits 8 and 9 are used to
turn the interrupt on and off. The mne-
monics are the same as those for con-

4.4 pus

trolling Busy and Done in |/O devices,
but with code 77 they select the fol-
lowing special functions.

Mne-

monic Function

S Set the Interrupt On flag to
enable the processor to re-
spond to interrupt requests.

o] Clear the Interrupt On flag to
prevent the processor from
responding 1o interrupt re-
quests.

P None.
NIOS CPU Set Interrupt On 44#5

DRV D (e RN

0’1 2345678 9'101112'13 1815
Set the Interrupt On flag to allow the
processor to respond to interrupt re-
quests.
NIOC CPU

Clear Interrupt On 4.4 ps
|u]1 tloofoooftoft11111]

T234567 89 0NIZBNIID
CIear the Interrupt On flag to prevent
the processor from responding to in-
terrupt requests.
DIA AC,CPU

Data In A, Processor 4.4 us

0[11]Ac001] FlLi11,1 1]

012345678 9001213115
Read the contents of the console data
switches into accumulator AC, and
perform the function specified by F.
DIB AC,CPU

Data In B, Processor 4.4 us

11ACIO1 1 F (111111
072345 67 8 9101112131815
Place in accumulator AC the device
code of the first device on the bus that
is requesting an interrupt ("first” means
the one that is physically closest to
the processor on the bus.) Perform the
function specified by F.
DOB AC,CPU

Data Qut B, Processor 4.7 us
[ofi1]ac]io0f F]111111]
0T 2 345678 9'101112131415
Set up the Interrupt Disable flags in
the devices according to the mask in
accumulator AC. For this purpose each
device is connected to a given data

line, and its flag is set or cleared as

" the corresponding bit in the mask is

1 or 0. Perform the function specified
by F.

" BIC 0,CPU
Data In C, Processor 4.4 ps
|o|11[oo|101[1 1[F 1111

T2 34567390 NIZB1IID
Clear the control flipflops, including

~ Busy, Done and Interrupt Disable, in

all devices connected to the bus. Per-

“form the function specified by F.

poc 0,CPU

Data Qut C, Processor 4.7 1s
ofriooft 1oft1fF 1111
01234567 89 0NIZBENGIE

Perform the function specified by F.
and then halt the processor.

' SKPBN CPU Skip if

Busy is Nonzero, Processor 4.4 us

|0[11|00]1 11[00[1 1111 1]
0T 234567 89 0NIZBR I
Skip the next instruction in sequence
if the Interrupt On flag is 1.
SKPBZ CPU Skipif
Busy is Zero, Processor

4.4 ps

|a|11|n011 11Jo1f1 1.1 111]

0T 234567 890N 21
Skip the next instruction in sequence
if Interrupt On is 0.

The assembler recognizes a number

* of convenient mnemonics for instruc-

tions with device code 77.

Mne- Mnemonic Octal
monic M g Eq
READS Read DlA —CPU 060477
Switches
IORST 10 Reset DICC 0CPU 082677
HALT Halt DocC 0.CPU 063077
INTEN Interrupt NIOS CPU 06m 7T
| Enable
INTDS Interrupt NIOC CPU 060277
Disable
INTA Interrupt DIB —CPU 01477
Acknowledge
MSKO MaskOut DOB —CPU 062077

NOVA Options

1K Read-Only Memory Module

(1024 words of 16 bits each)

Includes 1K words (2K bytes) of Read-
Only Memory which is interchangeable
with the alterable core memory with
no wiring modifications required. The
contents of this module can be either

standard programs or special cus-
tomer specified programs.

NOVA Central Processor —

Rack Mountable

Includes central processor, console

(with lock), high-speed data channel,
power supply, five subassembly slots
available in basic frame. This basic
frame is rack mountable in a stan-
dard 19" rack with slides.

NOVA Central Processor —

Table Top Model

Includes central processor, consocle
(with lock), high-speed data channel
power supply, five subassembly slots
available in basic frame. This basic
frame is enclosed in a cabinet de-
signed for table top use.

4K Core Memory

(4096 words of 16-bits each)

Includes 4K words (8K bytes) of mem-
ory with all necessary electronics
mounted on a single subassembly
(15”x15” printed circuit card) which
can be plugged directly into one of
the slots in the basic frame with no
wiring modifications required.

2K Core Memory

(2049 words of 16 bits each)

Includes 2K words (4K bytes) of mem-
ory mounted on a single subassembly
(15”x15"” printed circuit card) which
can be plugged directly into one of
the slots in the basic frame with no
wiring modifications required.

1K Core Memory

(1024 words of 16 bits each)

Includes 1K words (2K bytes) of mem-
ory mounted on a single subassembly
(157x15"” printed circuit card) which
can be plugged directly into one of the
slots in the basic frame with no wiring
modifications required.

Expansion Enclosure

This item is a basic frame with a
power supply and slots to mount seven
(7) subassemblies. This unit is typi-
cally mounted directly above the cen-
tral processor frame and is used to
mount additional memory (alterable
core or Read Only), additional I/O
controllers, or special customer de-
signed hardware.

Power Monitor and Auto Restart

Provides power level detection and a
flag which is attached to the Program
Interrupt and can be sensed by the
program. Its function is to allow the
program to become aware of an im-
minent power failure so it can provide
for an orderly shut down. The program
automatically restarts at location0.

Real-Time Clock

This option provides a flag which can
be enabled by the program to provide a
program interrupt at a fixed frequency.
Either the AC line or a crystal clock
may be specified as the time source.

Teletype Input/Output Interface

This option provides an interface to
any one of the Teletype models listed
below:

Teletype ASR33

Keyboard/printer, 8 channel reader/
punch, 10 char./sec.

Teletype KSR33

Keyboard/printer, 10 char./sec.
Teletype KSR35

Keyboard/printer, 10 char./sec.
Teletype KSR37

Keyboard/printer (upper/lower case),
15 char./sec.

High-Speed Perforated Tape

Reader and Control

Paper tape reader and control which
senses eight channel, fan fold perfo-
rated Mylar or paper tape photo-
electrically at 150 or 300 characters
per second.

High-Speed Perforated Tape

Punch and Control

BRFE11 Punch and Control which
punches eight channel fan fold paper
tape at 63.3 characters per second.

Cathode Ray Tube Display

and Control

This equipment includes a Tektronix
Type 602 5” Rectangular Display and a
control interface operating in a point
plotting mode (256 points x 256 points)
using the Data Channel for display
refresh.

Medium-Speed Line Printer

and Control

This option includes a Potter Medium-
Speed Line Printer Type HSP3502 and
control. This is a chain printer with a
full ASCIl interface including paper
advance (LF, FF) characters.

Card Reader and Control

Soroban SCCR card reader and control
which operates at 225, 400 or 600
cards per minute.

Incremental Plotter

Plotters and control interfaces to units
made by two different manufacturers.
1) The California Computer Products
500 Series units (Drum or Flal Bed
Style). 2) The Houston Instruments
Complot DP-1 Digital Plotter which
uses "'Z fold" style paper.

In addition, the following devices will
be available: magnetic disk, incremen-
tal tape, IBM compatible magnetic tape,
and a complete line of A/D and D/A
equipment.

Printed U.S.A. © Nov.1968 PL1-20M

DATA GENERAL
P CORPORATION

Southboro, Massachusetts 01772

